

Topic 2: The Communications Channel

Academic Year 2013 - 2014

P1.- A stochastic process $X \sim N(2,3)$, stationary and with independent samples, is introduced into a communications channel that can be modeled as an LTI system with impulse response:

$$h(t) = \delta(t) + 0.5\delta(t-1) + 0.1\delta(t-2)$$

Obtain:

- a) The PDF of the stochastic process to the channel output.
- b) The autocorrelation of the stochastic process to the channel output.
- c) The power of the stochastic process to the channel output.

P2.- Consider the discrete system shown in the Figure 1:

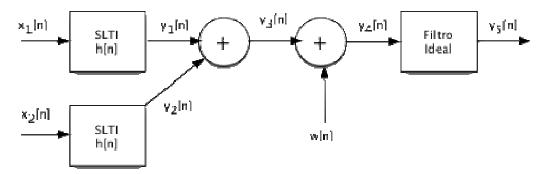


Figure 1.- Communication system.

The discrete stochastic processes $x_1[n]$ and $x_2[n]$ are i.i.d. Both distributions are Gaussian processes: $X_1 \sim N(0,2)$ and $X_2 \sim N(1,3)$. These processes are the signals transmitted by two different users to a base station. Both are transmitted by a channel modeled by an LTI system, represented in the Figure 1 by $h_1[n]$ and $h_2[n]$, respectively, with impulse responses:

$$\begin{aligned} h_1[n] &= 2\delta[n] - \delta[n-1] \\ h_2[n] &= \delta[n] - 0.5\delta[n-1] + 0.1\delta[n-2] \end{aligned}$$

As shown in the Figure 1, the received signal is added to a noise w[n] (Gaussian, white and discrete, with zero mean and power spectral density $N_0/2$. Obtain:

- a) The PDF of $y_3[n]$.
- b) The power of $y_3[n]$.
- c) The autocorrelation of $y_1[n]$.

Assume that the base station wants to receive only to the user 1, so that the signal received from the user 2 is considered Gaussian noise (in addition to w[n]).

d) Obtain the SNR of $y_4[n]$.

Consider now that the signal $y_1[n]$ is centered around a frequency f_1 , with bandwidth 2B; and $y_2[n]$ is centered around a frequency f_2 , with bandwidth 2B. f_1 and f_2 are far apart, so that the signals do not overlap in frequency. Assume further that the ideal filter located at the end of the scheme has a bandwidth of 2B, and is centered at f_1 .

- e) Obtain the SNR of $y_5[n]$.
- **P3.-** Suppose you have a passive attenuator (L = 6dB) and an amplifier (G = 15dB; $F_{amp} = 9dB$). Obtain the noise factor of a system consisting of:
 - a) The attenuator followed by the amplifier.
 - b) The amplifier followed by the attenuator.
- **P4.-** Consider a nonlinear amplifier having a noise temperature at the input of 17°C and these data:
 - Signal power at the input = $2 \cdot 10^{-10}$ W
 - Noise power at the input = $2 \cdot 10^{-18}$ W
 - Power gain = 10^6
 - Internal noise power = $6 \cdot 10^{-12}$ W

Obtain:

- a) The SNR at the input (in dB).
- b) The SNR at the output (in dB).
- c) The noise factor (in dB).
- **P5.-** Obtain the total noise factor of a cascade of three amplification stages. Every amplifier with noise factor = 3dB and power gain = 10dB.
- **P6.-** Obtain the noise temperature of a device whose noise figure is 6dB.